Part Number Hot Search : 
2SD78 336ME0 NSS4020 BS123 CPD109R MRF6P AO4405 DTB143
Product Description
Full Text Search
 

To Download IRFB4710 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  notes ? through ? are on page 11 www.irf.com 1 3/16/01 IRFB4710 irfs4710 irfsl4710 hexfet ? power mosfet v dss r ds(on) max i d 100v 0.014 w 75a pd- 94080 d 2 pak irfs4710 to-220ab IRFB4710 to-262 irfsl4710 parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 75 i d @ t c = 100c continuous drain current, v gs @ 10v 53 a i dm pulsed drain current ? 300 p d @t a = 25c power dissipation ? 3.8 w p d @t c = 25c power dissipation 200 linear derating factor 1.4 w/c v gs gate-to-source voltage 20 v dv/dt peak diode recovery dv/dt ? 8.2 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torqe, 6-32 or m3 screw ? 10 lbf?in (1.1n?m) absolute maximum ratings l high frequency dc-dc converters l motor control l uninterrutible power supplies benefits applications l low gate-to-drain charge to reduce switching losses l fully characterized capacitance including effective c oss to simplify design, (see app. note an1001) l fully characterized avalanche voltage and current thermal resistance parameter typ. max. units r q jc junction-to-case CCC 0.74 r q cs case-to-sink, flat, greased surface ? 0.50 CCC c/w r q ja junction-to-ambient ? CCC 62 r q ja junction-to-ambient ? CCC 40
irfb/irfs/irfl4710 2 www.irf.com parameter min. typ. max. units conditions g fs forward transconductance 35 CCC CCC s v ds = 50v, i d = 45a q g total gate charge CCC 110 170 i d = 45a q gs gate-to-source charge CCC 43 CCC nc v ds = 50v q gd gate-to-drain ("miller") charge CCC 40 CCC v gs = 10v, t d(on) turn-on delay time CCC 35 CCC v dd = 50v t r rise time CCC 130 CCC i d = 45a t d(off) turn-off delay time CCC 41 CCC r g = 4.5 w t f fall time CCC 38 CCC v gs = 10v ? c iss input capacitance CCC 6160 CCC v gs = 0v c oss output capacitance CCC 440 CCC v ds = 25v c rss reverse transfer capacitance CCC 250 CCC pf ? = 1.0mhz c oss output capacitance CCC 1580 CCC v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance CCC 280 CCC v gs = 0v, v ds = 80v, ? = 1.0mhz c oss eff. effective output capacitance CCC 430 CCC v gs = 0v, v ds = 0v to 80v ? dynamic @ t j = 25c (unless otherwise specified) ns parameter typ. max. units e as single pulse avalanche energy ? CCC 190 mj i ar avalanche current ? CCC 45 a e ar repetitive avalanche energy ? CCC 20 mj avalanche characteristics s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) ?? CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC 1.3 v t j = 25c, i s = 45a, v gs = 0v ? t rr reverse recovery time CCC 74 110 ns t j = 25c, i f = 45a q rr reverse recoverycharge CCC 180 260 nc di/dt = 100a/s ? t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) diode characteristics 75 300 a static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 100 CCC CCC v v gs = 0v, i d = 250a d v (br)dss / d t j breakdown voltage temp. coefficient CCC 0.11 CCC v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance CCC 0.011 0.014 w v gs = 10v, i d = 45a ? v gs(th) gate threshold voltage 3.5 CCC 5.5 v v ds = v gs , i d = 250a CCC CCC 1.0 a v ds = 95v, v gs = 0v CCC CCC 250 v ds = 80v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 100 v gs = 20v gate-to-source reverse leakage CCC CCC -100 na v gs = -20v i gss i dss drain-to-source leakage current
irfb/irfs/irfl4710 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.01 0.1 1 10 100 1000 0.1 1 10 100 20 s pulse width t = 25 c j top bottom vgs 15v 12v 10v 8.0v 7.5v 7.0v 6.5v 6.0v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 6.0v 1 10 100 1000 0.1 1 10 100 20s pulse width t = 175 c j top bottom vgs 15v 12v 10v 8.0v 7.5v 7.0v 6.5v 6.0v v , drain-to-source volta g e (v) i , drain-to-source current (a) ds d 6.0v 0.1 1 10 100 1000 6.0 7.0 8.0 9.0 10.0 v = 50v 20s pulse width ds v , gate-to-source volta g e (v) i , drain-to-source current (a) gs d t = 25 c j t = 175 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 75a
irfb/irfs/irfl4710 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 40 80 120 160 200 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 45a v = 20v ds v = 50v ds v = 80v ds 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 10000 c, capacitance(pf) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , drain-to-source current (a) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 0.1 1 10 100 1000 0.0 0.4 0.8 1.2 1.6 v ,source-to-drain volta g e (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 175 c j
irfb/irfs/irfl4710 www.irf.com 5 fig 10a. switching time test circuit v ds 90% 10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms v ds pulse width 1 s duty factor 0.1 % r d v gs r g d.u.t. 10v + - v dd fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 175 0 20 40 60 80 t , case temperature ( c) i , drain current (a) c d
irfb/irfs/irfl4710 6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 m f 50k w .2 m f 12v current regulator same type as d.u.t. current sampling resistors + - 10 v fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as 25 50 75 100 125 150 175 0 50 100 150 200 250 300 350 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 18a 32a 45a r g i as 0.01 w t p d.u.t l v ds + - v dd driver a 15v 20v v gs
irfb/irfs/irfl4710 www.irf.com 7 p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 14. for n-channel hexfet ? power mosfets * v gs = 5v for logic level devices peak diode recovery dv/dt test circuit ? ? ? r g v dd dv/dt controlled by r g driver same type as d.u.t. i sd controlled by duty factor "d" d.u.t. - device under test d.u.t circuit layout considerations low stray inductance ground plane low leakage inductance current transformer ? *
irfb/irfs/irfl4710 8 www.irf.com lead assignments 1 - g a t e 2 - d r a in 3 - s o u r c e 4 - d r a in - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) m in 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.3 6 (.014 ) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 o utline conforms to jedec outline to-220ab. 2 c o n tr o llin g d im e n s io n : in c h 4 h e a t s in k & le a d m e a s u r e m e n t s d o n ot include burrs. to-220ab part marking information to-220ab package outline dimensions are shown in millimeters (inches) part number international rectifier lo g o example : this is an irf1010 w ith as se m bly lo t c o de 9b 1m assembly lot co de date code (yyww) yy = year w w = w ee k 9246 irf1010 9b 1m a
irfb/irfs/irfl4710 www.irf.com 9 d 2 pak package outline d 2 pak part marking information 10.16 (.400) re f. 6.47 (.255) 6.18 (.243) 2.61 (.103) 2.32 (.091) 8.89 (.350) r e f. - b - 1.32 (.052) 1.22 (.048) 2.79 (.110) 2.29 (.090) 1.39 (.055) 1.14 (.045) 5.28 (.208) 4.78 (.188) 4.69 (.185) 4.20 (.165) 10.54 (.415) 10.29 (.405) - a - 2 1 3 15.49 (.610) 14.73 (.580) 3x 0.93 (.037) 0.69 (.027) 5.08 (.200) 3x 1.40 (.055) 1.14 (.045) 1.78 (.070) 1.27 (.050) 1.40 (.055) m ax. notes: 1 dimensions after solder dip. 2 dimensioning & tolerancing per ansi y14.5m, 1982. 3 controlling dimension : inch. 4 heatsink & lead dimensions do not include burrs. 0.55 (.022) 0.46 (.018) 0.25 (.010) m b a m minimum recommended footprint 11.43 (.450) 8.89 (.350) 17.78 (.700) 3.81 (.150) 2.08 (.082) 2x lead assignments 1 - ga te 2 - d r ain 3 - s ou rc e 2.54 (.100) 2x part number international rectifier logo date code (yyw w ) yy = year ww = week assembly lot code f530s 9b 1m 9246 a
irfb/irfs/irfl4710 10 www.irf.com to-262 part marking information to-262 package outline
irfb/irfs/irfl4710 www.irf.com 11 ? repetitive rating; pulse width limited by max. junction temperature. ? i sd 45a, di/dt 420a/s, v dd v (br)dss , t j 175c notes: ? starting t j = 25c, l = 190h r g = 25 w , i as = 45a, v gs = 10v ? pulse width 400s; duty cycle 2%. ? c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss ? this is only applied to to-220ab package d 2 pak tape & reel information 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. ? this is applied to d 2 pak, when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint and soldering techniques refer to application note #an-994. data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 3/01


▲Up To Search▲   

 
Price & Availability of IRFB4710

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X